círculo dos conhecidos - tradução para
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

círculo dos conhecidos - tradução para

Grande círculo; Grande Círculo
  • Círculos máximos sobre uma esfera.
  • Uma [[navisfera]] celeste

círculo máximo         
большой круг (сферы)
círculo polar árctico         
FRONTEIRA DO ÁRTICO
Círculo polar ártico; Círculo polar árctico; Círculo Ártico; Círculo Polar Árctico; Círculo polar Ártico
северный полярный круг (Порт.)
círculo polar ártico         
FRONTEIRA DO ÁRTICO
Círculo polar ártico; Círculo polar árctico; Círculo Ártico; Círculo Polar Árctico; Círculo polar Ártico
северный полярный круг

Definição

ГАРРИНЧА
Гарринша (Garrincha) Мануэл Франсиску дус Сантос (1933-83), бразильский спортсмен (футбол). Выступал в составе команды "Ботафого" (Рио-де-Жанейро) в 1953-65. Чемпион мира 1958 и 1962. Один из лучших крайних нападающих в истории мирового футбола.
---
Гарринша (Gаrrincha) Мануэл Франсиску дус Сантос (28 октября 1933, Пау-Гранде, округ Маже, штат Гуанабара - 20 января 1983, Рио-де-Жанейро), бразильский спортсмен. Двукратный чемпион мира (1958 и 1962) по футболу в составе национальной сборной. Лучший правый крайний нападающий в истории мирового футбола. Неудержимый Дед и отец его были родом из небольшого индейского племени фулнио из штата Алагоас. Гарринча отличался свободолюбивым и независимым характером. В 20 лет он вышел на поле знаменитого клуба "Ботафого" (Рио-де-Жанейро) и, показав целый каскад оригинальных финтов, легко обыграл защитника сборной Бразилии Н. Сантоса; после этого был сразу зачислен в команду (1953). В первом же матче забил три гола. В 1958 на чемпионате мира в Швеции вышел на поле в матче со сборной СССР вместе с 17-летним Пеле и устроил яркий "бенефис" футбола, о котором с восторгом вспоминали очевидцы. В течение 8 лет сборная Бразилии не проиграла ни одного матча, пока в ее составе играли Пеле и Гарринча. Тренеры "Ботафого" и сборной предоставили Гарринче полную свободу действий на правом фланге, где он был неудержим. "Чарли Чаплин футбола" Так прозвали его журналисты и за походку вразвалочку (ведь одна нога была заметно короче другой) и за элегантное, артистическое обращение с мячом, выражавшееся в точнейших пасах, в искусстве обводки, в мощных и точных ударах по воротам. В каждом сезоне он забивал не менее 20 голов, а лучшими для него как для бомбардира стали 1958 и 1962 - 33 и 35 голов в составе "Ботафого". В середине 1960-х гг. из-за серьезных травм вынужден был пропустить много игр. В 1966 провел последние матчи в составе сборной Бразилии на чемпионате мира в Лондоне (всего сыграл за сборную Бразилии 61 матч и забил 17 голов). После "Ботафого" (1953-65) выступал за клубы "Коринтиас" (Санта-Паулу, 1966), "Фламенго" Рио-де-Жанейро, 1968-69), "Олария" (Рио-де-Жанейро, 1972). После окончания футбольной карьеры работать тренером не смог. Был очень одинок, несмотря на то, что имел 11 дочерей. Не случайно последняя книга о нем, вышедшая после его смерти, называется "Одинокая звезда" (Р. Кастро, 1995).

Wikipédia

Círculo máximo

Círculo máximo (ou grande círculo) é o círculo traçado sobre a superfície de uma esfera com o mesmo perímetro de sua circunferência, dividindo-a em dois hemisférios iguais.

O círculo máximo é o círculo de maior diâmetro, e por isso o de maior perímetro, que pode ser traçado sobre a superfície de uma esfera.

Essa condição tem uso prático em navegação astronômica, já que o cruzamento de um terceiro círculo máximo traçados ligando dois meridianos sobre a superfície da terra são fundamentais nas equações trigonométricas na resolução de triângulos de posição (ver Navisfera de Wilson). Assim como, o arco de circulo máximo liga um navegante ao polo terrestre da mesma forma o azimute que liga o navegador ao brilho da estrela, refletido no mar, é o mesmo arco de círculo máximo projetado na esfera celeste , que liga o navegante a estrela.

Dois pontos da superfície de uma esfera são sempre unidos por um arco do círculo máximo, já que a projeção desse tem, na geometria esférica, uma topologia análoga à de uma linha recta traçada sobre um plano.